9,341 research outputs found

    Conjugation-Length Dependence of Spin-Dependent Exciton Formation Rates in Pi-Conjugated Oligomers and Polymers

    Full text link
    We have measured the ratio, r = σS/σT\sigma_S/\sigma_T of the formation cross section, σ\sigma of singlet (σS\sigma_S) and triplet (σT\sigma_T) excitons from oppositely charged polarons in a large variety of π\pi-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which r1r^{-1} depends linearly on CL1CL^{-1}, irrespective of the chain backbone structure. These results indicate that π\pi-conjugated polymers have a clear advantage over small molecules in OLED applications.Comment: 5 pages, 4 figure

    Monte Carlo Simulation of the Short-time Behaviour of the Dynamic XY Model

    Full text link
    Dynamic relaxation of the XY model quenched from a high temperature state to the critical temperature or below is investigated with Monte Carlo methods. When a non-zero initial magnetization is given, in the short-time regime of the dynamic evolution the critical initial increase of the magnetization is observed. The dynamic exponent θ\theta is directly determined. The results show that the exponent θ\theta varies with respect to the temperature. Furthermore, it is demonstrated that this initial increase of the magnetization is universal, i.e. independent of the microscopic details of the initial configurations and the algorithms.Comment: 14 pages with 5 figures in postscrip

    Temperature dependence of the electronic structure of semiconductors and insulators

    Full text link
    The renormalization of electronic eigenenergies due to electron-phonon coupling is sizable in many materials with light atoms. This effect, often neglected in ab-initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the numerous recent progresses in this field, and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a q-point sampling inside the BZ. For q-points close to G, we show that a divergence due to non-zero Born effective charge appears in the electron-phonon matrix elements, leading to a divergence of the integral over the BZ for band extrema. Although it should vanish for non-polar materials, unphysical residual Born effective charges are usually present in ab-initio calculations. Here, we propose a solution that improves the coupled q-point convergence dramatically. For polar materials, the problem is more severe: the divergence of the integral does not disappear in the adiabatic harmonic approximation, but only in the non-adiabatic harmonic approximation. In all cases, we study in detail the convergence behavior of the renormalization as the q-point sampling goes to infinity and the imaginary broadening parameter goes to zero. This allows extrapolation, thus enabling a systematic way to converge the renormalization for both polar and non-polar materials. Finally, the adiabatic and non-adiabatic theory, with corrections for the divergence problem, are applied to the study of five semiconductors and insulators: a-AlN, b-AlN, BN, diamond and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening and the renormalized electronic bandstructure.Comment: 27 pages and 26 figure

    Giant Gravitons in type IIA PP-wave Background

    Full text link
    We examine giant gravitons with a worldvolume magnetic flux qq in type IIA pp-wave background and find that they can move away from the origin along x4x^4 direction in target space satisfying Rx4=qRx^4=-q. This nontrivial relation can be regarded as a complementary relation of the giant graviton on IIA pp-wave and is shown to be connected to the spacetime uncertainty principle. The giant graviton is also investigated in a system of N D0-branes as a fuzzy sphere solution. It is observed that x4x^4 enters into the fuzzy algebra as a deformation parameter. Such a background dependent Myers effect guarantees that we again get the crucial relation of our giant graviton. In the paper, we also find a BIon configuration on the giant graviton in this background.Comment: 10 pages, no figure, content added, typo corrected, reference adde

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    Analytic Representation of Finite Quantum Systems

    Full text link
    A transform between functions in R and functions in Zd is used to define the analogue of number and coherent states in the context of finite d-dimensional quantum systems. The coherent states are used to define an analytic representation in terms of theta functions. All states are represented by entire functions with growth of order 2, which have exactly d zeros in each cell. The analytic function of a state is constructed from its zeros. Results about the completeness of finite sets of coherent states within a cell are derived

    Nonequilibrium phase transition in a model for the propagation of innovations among economic agents

    Get PDF
    We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X.\ Guardiola, {\it et. al.}, Phys. Rev E {\bf 66}, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior

    Optimal strategies for continuous gravitational wave detection in pulsar timing arrays

    Full text link
    Supermassive black hole binaries (SMBHBs) are expected to emit continuous gravitational waves in the pulsar timing array (PTA) frequency band (10910^{-9}--10710^{-7} Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper we leverage methods developed for LIGO continuous wave gravitational searches, and explore the use of the F\mathcal{F}-statistic for such searches in pulsar timing data. Babak & Sesana 2012 have already used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model, and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of monte-carlo simulations. We produce sensitivity curves for PTAs of various configurations, and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.Comment: 11 pages, 5 figure

    Implementation of the Projector Augmented Wave LDA+U Method: Application to the Electronic Structure of NiO

    Full text link
    The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground state of NiO and its optical properties. The electronic and optical properties have been investigated as a function of the Coulomb repulsion parameter U. We find that the value obtained from constrained LDA (U=8 eV) is not the best possible choice, whereas an intermediate value (U=5 eV) reproduces the experimental magnetic moment and optical properties satisfactorily. At intermediate U, the nature of the band gap is a mixture of charge transfer and Mott-Hubbard type, and becomes almost purely of the charge-transfer type at higher values of U. This is due to the enhancement of the oxygen 2p states near the top of the valence states with increasing U value.Comment: 23 pages, 6 figures, submitted to Phys. Rev.
    corecore